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1 | Diagnosis

2  Analysis

@® Overview of the talk

® Diagnosis of the state of GFS model
parameterization of cloud variables such as
cloud fraction, cloud optical depth, liquid & ice
water path

® Assessment of atmospheric meteorological
variables (e.g. RH, T) leading to cloud formation
in the GFS model against observational data

® Testing of Cloud fraction Scheme & Cloud
Overlap Scheme

® Findings of aerosol climate effects and
implications for weather & climate modeling



@ Data & approach

Evaluation of GFS clouds
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@ Data & approach
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Diagnosis of clouds



@® Diagnosis
@ Cloud top pressure and cloud optical depth
MODIS CL
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Joint histograms of CTP and COD derived from retrievals by applying the C-L algorithm (left),
the MODIS-EOS products (middle), and the GFS model (right) in July 2007.)



Comparison Cloud Fraction - July
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@ Comparison of radiation at the TOA

Difference
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@ Comparison of RH Fields
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@ Analysis

Pressure (mb)

® ARM data at SGP site
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Relative humidity (left panel) and temperature (right panel) biases during July 2008:

Relative Humidity Bias

AIRS
GFS

1 I 1 1 1 1

-3

AERI versus AIRS, blue line; AERI versus GFS, red line.)
Bias = AERI measurements — AIRS or GFS)

0
Temperature Bias (K)

10



@ Application
GFS scheme

Xu and Randall (1996) Based g::dgoon((11998972))

An equation is Many of constants are

from empirical formula m based on observations

Only one equation Several equations
determines CFR determine CFR

T, RH, and RH, convective cfr,
Cloud mixing ratio Variables vertical velo, lapse rate

Maximum-Random

Maximum overla
overlap P



lication
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@Cloud Overlapping Scheme

@ Overlap assumption

Maximum overlap Random overlap Maximum-random overlap
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Cloud cover Cloud cover Cloud cover

A schematic illustrating the three overlap assumptions (from Hogan and Illingworth, 2000)

Geleyn and Hollingsworth 1979

Random overlap: noncontiguous layers, Maximum overlap: contiguous layers
Most widely used cloud overlap approximation in modern GCMs)




@Cloud Overlapping Scheme
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 Ciue = @*Cpy + (1-2)*C,,, where a(Az) = exp(-Az/Ly)

» Hogan and Illingworth

» For vertically continuous cloud,
the degree of correlation between t
he cloud positions decreased with v
ertical separation of the layers

Lef : 4 km)

» Naud et al.
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» Using cloud radar data from
ARM with NCEP reanalysis data

Lef : 2 km at SGP,
2.3 km at Manus, 1.8 km at Nauru

» Mace and Benson-Troth » Pincus et al.
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» Using MMCR Radar data fro P Using CRM simulation
m 4 ARM sites , Stratiform and convectiv
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Lecf : 3.9 km at SGP, clouds have different over

4 km at Manus, 4.6 km at Nauru lap.
St: Random, Con: Max

» Barker » Shonk et al.
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» Using CloudSat and CALIPSO P Based on two studies,
data they suggest a simple linear fit
Lcf : median value of 2 km for Lcf : dependent on only
global scales latitudes




@Cloud Overlapping Scheme

® Comparisons of Lcf
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Lcf values as a function of latitude for July 2007. The black solid line 1s a simple linear fit suggested by
Shonk et al. (2010) and the red and blue dots show mean and median values of Lcf, respectively.)



@ Cloud Overlapping Scheme
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What is the systematic model biase
in Precipitation Simulation?
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(>1 mm day, left; >20 mm day-!, right)
Wu et al. (2007, GRL)
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Long-term impacts of aerosols on the vertical
development of clouds and precipitation

Zhanging Li"***, Feng Niu®, Jiwen Fan*, Yangang Liu®, Daniel Rosenfeld® and Yanni Ding®

Aerosols alter cloud density and the radiative balance of the atmosphere. This leads to changes in cloud microphysics and
atmospheric stability, which can either suppress or foster the development of clouds and precipitation. The net effect is largely
unknown, but depends on meteorological conditions and aerosol properties. Here, we examine the long-term impact of aerosols
on the vertical development of clouds and rainfall frequencies, using a 10-year dataset of aerosol, cloud and meteorological
variables collected in the Southern Great Plains in the United States. We show that cloud-top height and thickness increase
with aerosol concentration measured near the ground in mixed-phase clouds—which contain both liquid water and ice—that
have a warm, low base. We attribute the effect, which is most significant in summer, to an aerosol-induced invigoration of
upward winds. In contrast, we find no change in cloud-top height and precipitation with aerosol concentration in clouds with
no ice or cool bases. We further show that precipitation frequency and rain rate are altered by aerosols. Rain increases with
aerosol concentration in deep clouds that have a high liquid-water content, but declines in clouds that have a low liquid-water
content. Simulations using a cloud-resolving model confirm these observations. Our findings provide unprecedented insights
of the long-term net impacts of aerosols on clouds and precipitation.



@ Aerosol effect

@ Effects of Aerosols on Rainfall Frequency & Rain Rate
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1. For thin clouds, rainfall occurrence is suppressed by aerosols (30%)
2. For thick clouds, rainfall frequency is increased by aerosols (50%)
3. Light rain is suppressed by aerosols, heavy rain is enhanced.
Li et al. (2011, Nature-Geosci)



Cloud top temperature (°C)

@ Aerosol effect

@ Impact of Aerosols on Cloud Phase & Height
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Results)

1. For mixed-phase clouds of low cloud base, cloud top (also thickness)
increases systematically with aerosol number concentration
2. For warm clouds, cloud top height (thickness) is not affected.



@ Aerosol effect

@ Effects of Cloud Phase Frequency of Occurrence of
Cloud Top Height
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1. As CN increases, high clouds occurred more frequently but low clouds
occurred less frequently



@ Summary
C

Diagnosis of clouds

Aerosol on rain

B The GFS model captures well the spatial
distributions of hydrometeors compared to
satellite retrievals, although large differences
exist in the magnitudes.

B The GFS model generates more high and
mid-level clouds, but less low-level clouds
than do satellite retrievals and tends to miss
low-level marine stratocumulus clouds.

B An underestimation of low clouds leads to
more outgoing LW radiation and less SW
radiation at the TOA.

B The GFS temperature field agrees well
with observations, the GFS RH simulations
both in the lower and upper troposphere tend
to be overestimated than observations.

B For thin clouds, rainfall occurrence is sup
pressed by aerosols (30%)

B For thick clouds, rainfall frequency is incr
eased by aerosols (50%)

Aerosol on cloud height

B For mixed-phase clouds of low cloud base
, cloud top (also thickness) increases with
aerosol number concentration

B For warm clouds, cloud top height (thickn
ess) is not affected.

Aerosol on cloud phase

B As CN increases, high clouds occurred m
ore frequently, but low clouds occurred le
ss frequently.




